PWL approximation of nonlinear dynamical systems, part II: identification issues
نویسندگان
چکیده
منابع مشابه
PWL approximation of nonlinear dynamical systems, Part–II: identification issues
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes a black-box identification method based on state space reconstruction and PWL approximation, and ap...
متن کاملPWL approximation of nonlinear dynamical systems, Part–I: structural stability
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topolog...
متن کاملPWL approximation of dynamical systems: an example
The piecewise-linear approximation technique developed by Julián et al. in the past few years is applied to dynamical systems dependent on given numbers of state variables and parameters. Referring to a particular example, i.e., the two-dimensional Bautin equation, it is shown that an accurately approximated dynamical system preserves both the dynamical (trajectories) and the structural-stabili...
متن کاملIdentification and Control of a Nonlinear Dynamical System Based on its Linearization: Part II
In Part II of this paper, the identification and control problems of a nonlinear dynamical system are considered in a simplified framework. First it is shown that when the linearized system is observable, the state vector of the nonlinear system can be reconstructed from the input and the output together with their past values. This establishes the existence of solutions to regulation problems ...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2005
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/22/1/002